• 首页

  • 归档

  • 标签

  • 分类

  • 友链
M S B l o g
M S B l o g

ms

获取中...

06
25
总结
教程
Elasticsearch

Elasticsearch的DSL

发表于 2021-06-25 • 总结 分页查询 Elasticsearch • 被 1,014 人看爆

Elasticsearch提供了基于JSON的完整查询DSL(特定于域的语言)来定义查询。将查询DSL视为查询的AST(抽象语法树),它由两种子句组成:

  • 叶子查询子句:
    叶查询子句中寻找一个特定的值在某一特定领域,如 match,term或 range查询。这些查询可以自己使用。
  • 复合查询子句
    复合查询子句包装其他叶查询或复合查询,并用于以逻辑方式组合多个查询(例如 bool或dis_max查询),或更改其行为(例如 constant_score查询)。
    查询子句的行为会有所不同,具体取决于它们是在 查询上下文中还是在过滤器上下文中使用。

导入官方测试数据

1,下载json文件

下载地址:官方下载
或者
https://gitee.com/xlh_blog/common_content/blob/master/es%E6%B5%8B%E8%AF%95%E6%95%B0%E6%8D%AE.json

2,导入elasticsearch

在kibana输入

POST bank/account/_bulk
上面json文件的数据

seach检索文档

ES支持两种基本方式检索;

  • 通过REST request uri 发送搜索参数 (uri +检索参数);
  • 通过REST request body 来发送它们(uri+请求体);

API:https://www.elastic.co/guide/en/elasticsearch/reference/7.x/getting-started-search.html

1,请求参数方式检索

GET bank/_search?q=*&sort=account_number:asc
说明:
q=* # 查询所有
sort # 排序字段
asc #升序


检索bank下所有信息,包括type和docs
GET bank/_search

2,uri+请求体进行检索

GET /bank/_search
{
  "query": { "match_all": {} },
  "sort": [
    { "account_number": "asc" },
    { "balance":"desc"}
  ]
}

DSL

Elasticsearch提供了一个可以执行查询的Json风格的DSL(domain-specific language领域特定语言)。这个被称为Query DSL,该查询语言非常全面

基本语法

如果针对于某个字段,那么它的结构如下:
{
  QUERY_NAME:{   # 使用的功能
     FIELD_NAME:{  #  功能参数
       ARGUMENT:VALUE,
       ARGUMENT:VALUE,...
      }   
   }
}

示例:

GET bank/_search
{
  "query": {  #  查询的字段
    "match_all": {}
  },
  "from": 0,  # 从第几条文档开始查
  "size": 5,
  "_source":["balance"],
  "sort": [
    {
      "account_number": {  # 返回结果按哪个列排序
        "order": "desc"  # 降序
      }
    }
  ]
}
#_source为要返回的字段

from,size分页查询:

GET bank/_search
{
  "query": {
    "match_all": {}
  },
  "from": 0,
  "size": 5
}

查询结果:

{
  "took" : 1,
  "timed_out" : false,
  "_shards" : {
    "total" : 1,
    "successful" : 1,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : {
      "value" : 1000,
      "relation" : "eq"
    },
    "max_score" : 1.0,
    "hits" : [
      {
        "_index" : "bank",
        "_type" : "accout",
        "_id" : "1",
        "_score" : 1.0,
        "_source" : {
          "account_number" : 1,
          "balance" : 39225,
          "firstname" : "Amber",
          "lastname" : "Duke",
          "age" : 32,
          "gender" : "M",
          "address" : "880 Holmes Lane",
          "employer" : "Pyrami",
          "email" : "amberduke@pyrami.com",
          "city" : "Brogan",
          "state" : "IL"
        }
      },
      {
        "_index" : "bank",
        "_type" : "accout",
        "_id" : "6",
        "_score" : 1.0,
        "_source" : {
          "account_number" : 6,
          "balance" : 5686,
          "firstname" : "Hattie",
          "lastname" : "Bond",
          "age" : 36,
          "gender" : "M",
          "address" : "671 Bristol Street",
          "employer" : "Netagy",
          "email" : "hattiebond@netagy.com",
          "city" : "Dante",
          "state" : "TN"
        }
      },
      {
        "_index" : "bank",
        "_type" : "accout",
        "_id" : "13",
        "_score" : 1.0,
        "_source" : {
          "account_number" : 13,
          "balance" : 32838,
          "firstname" : "Nanette",
          "lastname" : "Bates",
          "age" : 28,
          "gender" : "F",
          "address" : "789 Madison Street",
          "employer" : "Quility",
          "email" : "nanettebates@quility.com",
          "city" : "Nogal",
          "state" : "VA"
        }
      },
      {
        "_index" : "bank",
        "_type" : "accout",
        "_id" : "18",
        "_score" : 1.0,
        "_source" : {
          "account_number" : 18,
          "balance" : 4180,
          "firstname" : "Dale",
          "lastname" : "Adams",
          "age" : 33,
          "gender" : "M",
          "address" : "467 Hutchinson Court",
          "employer" : "Boink",
          "email" : "daleadams@boink.com",
          "city" : "Orick",
          "state" : "MD"
        }
      },
      {
        "_index" : "bank",
        "_type" : "accout",
        "_id" : "20",
        "_score" : 1.0,
        "_source" : {
          "account_number" : 20,
          "balance" : 16418,
          "firstname" : "Elinor",
          "lastname" : "Ratliff",
          "age" : 36,
          "gender" : "M",
          "address" : "282 Kings Place",
          "employer" : "Scentric",
          "email" : "elinorratliff@scentric.com",
          "city" : "Ribera",
          "state" : "WA"
        }
      }
    ]
  }
}

query/match匹配查询:

如果是非字符串,会进行精确匹配。如果是字符串,会进行全文检索

1,基本类型(非字符串),精确匹配

查询account_number为20的数据

GET bank/_search
{
  "query": {
    "match": {
      "account_number": "20"
    }
  }
}

查询结果:

{
  "took" : 13,
  "timed_out" : false,
  "_shards" : {
    "total" : 1,
    "successful" : 1,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : {
      "value" : 1,#有几条结果
      "relation" : "eq"
    },
    "max_score" : 1.0,#最大得分
    "hits" : [
      {
        "_index" : "bank",
        "_type" : "accout",
        "_id" : "20",
        "_score" : 1.0,#得分
        "_source" : {
          "account_number" : 20,
          "balance" : 16418,
          "firstname" : "Elinor",
          "lastname" : "Ratliff",
          "age" : 36,
          "gender" : "M",
          "address" : "282 Kings Place",
          "employer" : "Scentric",
          "email" : "elinorratliff@scentric.com",
          "city" : "Ribera",
          "state" : "WA"
        }
      }
    ]
  }
}

2,字符串,全文检索

查询address为mill lane的数据

GET bank/_search
{
  "query": {
    "match": {
      "address": "mill lane"
    }
  }
}

全文检索,最终会按照评分进行排序,会对检索条件进行分词匹配。
下面结果按照条件mill lane进行分词匹配,mill,lane,mill lane都会匹配
查询结果为:

{
  "took" : 18,
  "timed_out" : false,
  "_shards" : {
    "total" : 1,
    "successful" : 1,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : {
      "value" : 19,
      "relation" : "eq"
    },
    "max_score" : 9.507477,
    "hits" : [
      {
        "_index" : "bank",
        "_type" : "accout",
        "_id" : "136",
        "_score" : 9.507477,
        "_source" : {
          "account_number" : 136,
          "balance" : 45801,
          "firstname" : "Winnie",
          "lastname" : "Holland",
          "age" : 38,
          "gender" : "M",
          "address" : "198 Mill Lane",
          "employer" : "Neteria",
          "email" : "winnieholland@neteria.com",
          "city" : "Urie",
          "state" : "IL"
        }
      },
      {
        "_index" : "bank",
        "_type" : "accout",
        "_id" : "970",
        "_score" : 5.4032025,
        "_source" : {
          "account_number" : 970,
          "balance" : 19648,
          "firstname" : "Forbes",
          "lastname" : "Wallace",
          "age" : 28,
          "gender" : "M",
          "address" : "990 Mill Road",
          "employer" : "Pheast",
          "email" : "forbeswallace@pheast.com",
          "city" : "Lopezo",
          "state" : "AK"
        }
      },
      {
        "_index" : "bank",
        "_type" : "accout",
        "_id" : "345",
        "_score" : 5.4032025,
        "_source" : {
          "account_number" : 345,
          "balance" : 9812,
          "firstname" : "Parker",
          "lastname" : "Hines",
          "age" : 38,
          "gender" : "M",
          "address" : "715 Mill Avenue",
          "employer" : "Baluba",
          "email" : "parkerhines@baluba.com",
          "city" : "Blackgum",
          "state" : "KY"
        }
      },
      {
        "_index" : "bank",
        "_type" : "accout",
        "_id" : "472",
        "_score" : 5.4032025,
        "_source" : {
          "account_number" : 472,
          "balance" : 25571,
          "firstname" : "Lee",
          "lastname" : "Long",
          "age" : 32,
          "gender" : "F",
          "address" : "288 Mill Street",
          "employer" : "Comverges",
          "email" : "leelong@comverges.com",
          "city" : "Movico",
          "state" : "MT"
        }
      },
      {
        "_index" : "bank",
        "_type" : "accout",
        "_id" : "1",
        "_score" : 4.1042743,
        "_source" : {
          "account_number" : 1,
          "balance" : 39225,
          "firstname" : "Amber",
          "lastname" : "Duke",
          "age" : 32,
          "gender" : "M",
          "address" : "880 Holmes Lane",
          "employer" : "Pyrami",
          "email" : "amberduke@pyrami.com",
          "city" : "Brogan",
          "state" : "IL"
        }
      },
      {
        "_index" : "bank",
        "_type" : "accout",
        "_id" : "70",
        "_score" : 4.1042743,
        "_source" : {
          "account_number" : 70,
          "balance" : 38172,
          "firstname" : "Deidre",
          "lastname" : "Thompson",
          "age" : 33,
          "gender" : "F",
          "address" : "685 School Lane",
          "employer" : "Netplode",
          "email" : "deidrethompson@netplode.com",
          "city" : "Chestnut",
          "state" : "GA"
        }
      },
      {
        "_index" : "bank",
        "_type" : "accout",
        "_id" : "556",
        "_score" : 4.1042743,
        "_source" : {
          "account_number" : 556,
          "balance" : 36420,
          "firstname" : "Collier",
          "lastname" : "Odonnell",
          "age" : 35,
          "gender" : "M",
          "address" : "591 Nolans Lane",
          "employer" : "Sultraxin",
          "email" : "collierodonnell@sultraxin.com",
          "city" : "Fulford",
          "state" : "MD"
        }
      },
      {
        "_index" : "bank",
        "_type" : "accout",
        "_id" : "568",
        "_score" : 4.1042743,
        "_source" : {
          "account_number" : 568,
          "balance" : 36628,
          "firstname" : "Lesa",
          "lastname" : "Maynard",
          "age" : 29,
          "gender" : "F",
          "address" : "295 Whitty Lane",
          "employer" : "Coash",
          "email" : "lesamaynard@coash.com",
          "city" : "Broadlands",
          "state" : "VT"
        }
      },
      {
        "_index" : "bank",
        "_type" : "accout",
        "_id" : "715",
        "_score" : 4.1042743,
        "_source" : {
          "account_number" : 715,
          "balance" : 23734,
          "firstname" : "Tammi",
          "lastname" : "Hodge",
          "age" : 24,
          "gender" : "M",
          "address" : "865 Church Lane",
          "employer" : "Netur",
          "email" : "tammihodge@netur.com",
          "city" : "Lacomb",
          "state" : "KS"
        }
      },
      {
        "_index" : "bank",
        "_type" : "accout",
        "_id" : "449",
        "_score" : 4.1042743,
        "_source" : {
          "account_number" : 449,
          "balance" : 41950,
          "firstname" : "Barnett",
          "lastname" : "Cantrell",
          "age" : 39,
          "gender" : "F",
          "address" : "945 Bedell Lane",
          "employer" : "Zentility",
          "email" : "barnettcantrell@zentility.com",
          "city" : "Swartzville",
          "state" : "ND"
        }
      }
    ]
  }
}

query/match_phrase [不拆分匹配]

将需要匹配的值当成一整个单词(不分词)进行检索

  • match_phrase:不拆分字符串进行检索
  • 字段.keyword:必须全匹配上才检索成功

查处address中包含mill lane的所有记录,并给出相关性得分

GET bank/_search
{
  "query": {
    "match_phrase": {
      "address": "mill lane"   #  就是说不要匹配只有mill或只有lane的,要匹配mill lane一整个子串
    }
  }
}

查询结果为:

{
  "took" : 8,
  "timed_out" : false,
  "_shards" : {
    "total" : 1,
    "successful" : 1,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : {
      "value" : 1,
      "relation" : "eq"
    },
    "max_score" : 9.507477,
    "hits" : [
      {
        "_index" : "bank",
        "_type" : "accout",
        "_id" : "136",
        "_score" : 9.507477,
        "_source" : {
          "account_number" : 136,
          "balance" : 45801,
          "firstname" : "Winnie",
          "lastname" : "Holland",
          "age" : 38,
          "gender" : "M",
          "address" : "198 Mill Lane",
          "employer" : "Neteria",
          "email" : "winnieholland@neteria.com",
          "city" : "Urie",
          "state" : "IL"
        }
      }
    ]
  }
}

使用match的keyword

GET bank/_search
{
  "query": {
    "match": {
      "address.keyword": "mill"  # 字段后面加上 .keyword
    }
  }
}

查询结果:

{
  "took" : 0,
  "timed_out" : false,
  "_shards" : {
    "total" : 1,
    "successful" : 1,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : {
      "value" : 0,
      "relation" : "eq"
    },
    "max_score" : null,
    "hits" : [ ]
  }
}

修改匹配条件为"198 Mill Lane"

GET bank/_search
{
  "query": {
    "match": {
      "address.keyword": "198 Mill Lane"
    }
  }
}

查询结果为:

{
  "took" : 0,
  "timed_out" : false,
  "_shards" : {
    "total" : 1,
    "successful" : 1,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : {
      "value" : 1,
      "relation" : "eq"
    },
    "max_score" : 6.5032897,
    "hits" : [
      {
        "_index" : "bank",
        "_type" : "accout",
        "_id" : "136",
        "_score" : 6.5032897,
        "_source" : {
          "account_number" : 136,
          "balance" : 45801,
          "firstname" : "Winnie",
          "lastname" : "Holland",
          "age" : 38,
          "gender" : "M",
          "address" : "198 Mill Lane",
          "employer" : "Neteria",
          "email" : "winnieholland@neteria.com",
          "city" : "Urie",
          "state" : "IL"
        }
      }
    ]
  }
}

文本字段的匹配,使用keyword,匹配的条件就是要显示字段的全部值,要进行精确匹配的。
match_phrase是做短语匹配,只要文本中包含匹配条件,就能匹配到。

query/multi_math【多字段匹配】

state或者address中包含mill,并且在查询过程中,会对于查询条件进行分词。

GET bank/_search
{
  "query": {
    "multi_match": {  # 前面的match仅指定了一个字段。
      "query": "mill",
      "fields": [ # state和address有mill子串  不要求都有
        "state",
        "address"
      ]
    }
  }
}

查询结果:

{
  "took" : 4,
  "timed_out" : false,
  "_shards" : {
    "total" : 1,
    "successful" : 1,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : {
      "value" : 4,
      "relation" : "eq"
    },
    "max_score" : 5.4032025,
    "hits" : [
      {
        "_index" : "bank",
        "_type" : "accout",
        "_id" : "970",
        "_score" : 5.4032025,
        "_source" : {
          "account_number" : 970,
          "balance" : 19648,
          "firstname" : "Forbes",
          "lastname" : "Wallace",
          "age" : 28,
          "gender" : "M",
          "address" : "990 Mill Road",
          "employer" : "Pheast",
          "email" : "forbeswallace@pheast.com",
          "city" : "Lopezo",
          "state" : "AK"
        }
      },
      {
        "_index" : "bank",
        "_type" : "accout",
        "_id" : "136",
        "_score" : 5.4032025,
        "_source" : {
          "account_number" : 136,
          "balance" : 45801,
          "firstname" : "Winnie",
          "lastname" : "Holland",
          "age" : 38,
          "gender" : "M",
          "address" : "198 Mill Lane",
          "employer" : "Neteria",
          "email" : "winnieholland@neteria.com",
          "city" : "Urie",
          "state" : "IL"
        }
      },
      {
        "_index" : "bank",
        "_type" : "accout",
        "_id" : "345",
        "_score" : 5.4032025,
        "_source" : {
          "account_number" : 345,
          "balance" : 9812,
          "firstname" : "Parker",
          "lastname" : "Hines",
          "age" : 38,
          "gender" : "M",
          "address" : "715 Mill Avenue",
          "employer" : "Baluba",
          "email" : "parkerhines@baluba.com",
          "city" : "Blackgum",
          "state" : "KY"
        }
      },
      {
        "_index" : "bank",
        "_type" : "accout",
        "_id" : "472",
        "_score" : 5.4032025,
        "_source" : {
          "account_number" : 472,
          "balance" : 25571,
          "firstname" : "Lee",
          "lastname" : "Long",
          "age" : 32,
          "gender" : "F",
          "address" : "288 Mill Street",
          "employer" : "Comverges",
          "email" : "leelong@comverges.com",
          "city" : "Movico",
          "state" : "MT"
        }
      }
    ]
  }
}

query/bool/must复合查询

复合语句可以合并,任何其他查询语句,包括符合语句。这也就意味着,复合语句之间可以互相嵌套,可以表达非常复杂的逻辑。

  • must:必须达到must所列举的所有条件
  • must_not:必须不匹配must_not所列举的所有条件。
  • should:应该满足should所列举的条件。满足条件最好,不满足也可以,满足得分更高

例:

GET bank/_search
{
  "query": {
    "bool": {
      "must": [
        {
          "match": {
            "gender": "M"
          }
        },
        {
          "match": {
            "address": "mill"
          }
        }
      ],
      "must_not": [
        {
          "match": {
            "age": "18"
          }
        }
      ],
      "should": [
        {
          "match": {
            "lastname": "Wallace"
          }
        }
      ]
    }
  }
}

查询结果:

{
  "took" : 11,
  "timed_out" : false,
  "_shards" : {
    "total" : 1,
    "successful" : 1,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : {
      "value" : 3,
      "relation" : "eq"
    },
    "max_score" : 12.585751,
    "hits" : [
      {
        "_index" : "bank",
        "_type" : "accout",
        "_id" : "970",
        "_score" : 12.585751,
        "_source" : {
          "account_number" : 970,
          "balance" : 19648,
          "firstname" : "Forbes",
          "lastname" : "Wallace",
          "age" : 28,
          "gender" : "M",
          "address" : "990 Mill Road",
          "employer" : "Pheast",
          "email" : "forbeswallace@pheast.com",
          "city" : "Lopezo",
          "state" : "AK"
        }
      },
      {
        "_index" : "bank",
        "_type" : "accout",
        "_id" : "136",
        "_score" : 6.0824604,
        "_source" : {
          "account_number" : 136,
          "balance" : 45801,
          "firstname" : "Winnie",
          "lastname" : "Holland",
          "age" : 38,
          "gender" : "M",
          "address" : "198 Mill Lane",
          "employer" : "Neteria",
          "email" : "winnieholland@neteria.com",
          "city" : "Urie",
          "state" : "IL"
        }
      },
      {
        "_index" : "bank",
        "_type" : "accout",
        "_id" : "345",
        "_score" : 6.0824604,
        "_source" : {
          "account_number" : 345,
          "balance" : 9812,
          "firstname" : "Parker",
          "lastname" : "Hines",
          "age" : 38,
          "gender" : "M",
          "address" : "715 Mill Avenue",
          "employer" : "Baluba",
          "email" : "parkerhines@baluba.com",
          "city" : "Blackgum",
          "state" : "KY"
        }
      }
    ]
  }
}

query/filter【结果过滤】

  • must 贡献得分
  • should 贡献得分
  • must_not 不贡献得分
  • filter 不贡献得分

上面的must和should影响相关性得分,而must_not仅仅是一个filter ,不贡献得分
must改为filter就使must不贡献得分
如果只有filter条件的话,我们会发现得分都是0
一个key多个值可以用terms

并不是所有的查询都需要产生分数,特别是哪些仅用于filtering过滤的文档。为了不计算分数,elasticsearch会自动检查场景并且优化查询的执行。

查询所有匹配address=mill的文档,然后再根据10000<=balance<=20000进行过滤查询结果:

GET bank/_search
{
  "query": {
    "bool": {
      "must": [
        {"match": {
          "address": "mill"
        }}
      ],
      "filter": {
        "range": {
          "balance": {
            "gte": 10000,
            "lte": 20000
          }
        }
      }
    }
  }
}

查询结果为:

{
  "took" : 1,
  "timed_out" : false,
  "_shards" : {
    "total" : 1,
    "successful" : 1,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : {
      "value" : 1,
      "relation" : "eq"
    },
    "max_score" : 5.4032025,
    "hits" : [
      {
        "_index" : "bank",
        "_type" : "accout",
        "_id" : "970",
        "_score" : 5.4032025,
        "_source" : {
          "account_number" : 970,
          "balance" : 19648,
          "firstname" : "Forbes",
          "lastname" : "Wallace",
          "age" : 28,
          "gender" : "M",
          "address" : "990 Mill Road",
          "employer" : "Pheast",
          "email" : "forbeswallace@pheast.com",
          "city" : "Lopezo",
          "state" : "AK"
        }
      }
    ]
  }
}

query/term

和match一样。匹配某个属性的值。

  • 全文检索字段用match,
  • 其他非text字段匹配用term。

不要使用term来进行文本字段查询

es默认存储text值时用分词分析,所以要搜索text值,使用match

官方api

字段.keyword:要一一匹配到
match_phrase:子串包含即可

使用term匹配文本,会匹配不到

GET bank/_search
{
  "query": {
    "term": {
      "address": "mill Road"
    }
  }
}

查询结果:

{
  "took" : 1,
  "timed_out" : false,
  "_shards" : {
    "total" : 1,
    "successful" : 1,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : {
      "value" : 0,
      "relation" : "eq"
    },
    "max_score" : null,
    "hits" : [ ]
  }
}

而更换为match匹配时,能够匹配到32个文档
image.png

全文检索字段用match,其他非text字段匹配用term

aggs(聚合)

聚合提供了从数据中分组和提取数据的能力。最简单的聚合方法大致等于SQL Group by和SQL聚合函数。

在elasticsearch中,执行搜索返回this(命中结果),并且同时返回聚合结果,把以响应中的所有hits(命中结果)分隔开的能力。这是非常强大且有效的,你可以执行查询和多个聚合,并且在一次使用中得到各自的(任何一个的)返回结果,使用一次简洁和简化的API啦避免网络往返。

语法:

"aggs":{ # 聚合
    "aggs_name":{ # 这次聚合的名字,方便展示在结果集中
        "AGG_TYPE":{} # 聚合的类型(avg,term,terms...)
     }
}

例:搜索address中包含mill的所有人的年龄分布以及平均年龄,但不显示这些人的详情

# 分别为包含mill、,平均年龄、
GET bank/_search
{
  "query": { # 查询出包含mill的
    "match": {
      "address": "Mill"
    }
  },
  "aggs": { #基于查询聚合
    "ageAgg": {  # 聚合的名字,随便起
      "terms": { # 看值的可能性分布
        "field": "age",
        "size": 10
      }
    },
    "ageAvg": { 
      "avg": { # 看age值的平均
        "field": "age"
      }
    },
    "balanceAvg": {
      "avg": { # 看balance的平均
        "field": "balance"
      }
    }
  },
  "size": 0  # 结果显示条数为0,不看详情
}

查询结果:

{
  "took" : 2,
  "timed_out" : false,
  "_shards" : {
    "total" : 1,
    "successful" : 1,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : {
      "value" : 4, // 命中4条
      "relation" : "eq"
    },
    "max_score" : null,
    "hits" : [ ]
  },
  "aggregations" : {
    "ageAgg" : { // 第一个聚合的结果
      "doc_count_error_upper_bound" : 0,
      "sum_other_doc_count" : 0,
      "buckets" : [
        {
          "key" : 38,  # age为38的有2条
          "doc_count" : 2
        },
        {
          "key" : 28,
          "doc_count" : 1
        },
        {
          "key" : 32,
          "doc_count" : 1
        }
      ]
    },
    "ageAvg" : { // 第二个聚合的结果
      "value" : 34.0  # balance字段的平均值是34
    },
    "balanceAvg" : {
      "value" : 25208.0
    }
  }
}

aggs/aggName子聚合

查出所有年龄分布,并且这些年龄段中M的平均薪资和F的平均薪资以及这个年龄段的总体平均薪资

GET bank/_search
{
  "query": {
    "match_all": {}
  },
  "aggs": {
    "ageAgg": {
      "terms": {
        "field": "age",
        "size": 100
      },
      "aggs": {
        "genderAgg":{
          "terms": {
            "field": "gender.keyword",
            "size": 10
          },
          "aggs": {
            "avgAgg": {
              "avg": {
                "field": "balance"
              }
            }
          }
        },
        "ageBalace": {
          "avg": {
            "field": "balance"
          }
        }
      }
    }
  },
  "size": 0
}

查询结果为:
image.png

分享到:
ElasticSearch的Mapping字段映射
Elasticsearch常用API
  • 文章目录
  • 站点概览
ms

MSms

⚓️HelloWorld⚓️

QQ Email RSS
看爆 Top5
  • MyBatis-Plus分页查询 5,936次看爆
  • @Autowired与@Resource的区别 4,754次看爆
  • feign远程调用及异步调用丢失请求头问题 4,526次看爆
  • spring cloud中OpenFeign整合Sentinel启动报错 4,423次看爆
  • Certbot查看证书过期时间,手动续期以及自动续期 3,302次看爆

Copyright © 2025 ms · 湘ICP备20015239号

Proudly published with Halo · Theme by fyang · 站点地图